mlresearch.model_selection
.ModelSearchCV¶
- class mlresearch.model_selection.ModelSearchCV(estimators, param_grids, scoring=None, n_jobs=None, refit=True, cv=5, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score=False)[source]¶
Exhaustive search over specified parameter values for a collection of estimators.
Important members are fit, predict.
ModelSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”, “decision_function”, “transform” and “inverse_transform” if they are implemented in the estimators used.
The parameters of the estimators used to apply these methods are optimized by cross-validated grid-search over their parameter grids.
Read more in the User Guide.
- Parameters:
- estimatorslist of (string, estimator) tuples
Each estimator is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a
score
function, orscoring
must be passed.- param_gridsdict or list of dictionaries
Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings.
- scoringstring, callable, list/tuple, dict or None, default=None
A single string or a callable to evaluate the predictions on the test set.
For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as keys and callables as values.
Note that when using custom scorers, each scorer should return a single value. Metric functions returning a list/array of values can be wrapped into multiple scorers that return one value each.
If
None
, the estimator’s score method is used.- n_jobsint, default=None
Number of jobs to run in parallel.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- pre_dispatchint or string, default=None
Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:
None
, in which case all the jobs are immediately created.An int, giving the exact number of total jobs that are spawned.
A string, as a function of n_jobs i.e.
'2*n_jobs'
.
- cvint, cross-validation generator or an iterable, default=5
Determines the cross-validation splitting strategy. Possible inputs for cv are:
None
, to use the default 3-fold cross validation.integer, to specify the number of folds in a
(Stratified)KFold
.An object to be used as a cross-validation generator.
An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if the estimator is a classifier and
y
is either binary or multiclass,StratifiedKFold
is used. In all other cases,KFold
is used. These splitters are instantiated with shuffle=False so the splits will be the same across calls.- refitboolean, string, or callable, default=True
Refit an estimator using the best found parameters on the whole dataset.
For multiple metric evaluation, this needs to be a string denoting the scorer that would be used to find the best parameters for refitting the estimator at the end.
Where there are considerations other than maximum score in choosing a best estimator,
refit
can be set to a function which returns the selectedbest_index_
givencv_results_
. In that case, thebest_estimator_
andbest_parameters_
will be set according to the returnedbest_index_
while thebest_score_
attribute will not be availble.The refitted estimator is made available at the
best_estimator_
attribute and permits usingpredict
directly on thisModelSearchCV
instance.Also for multiple metric evaluation, the attributes
best_index_
,best_score_
andbest_params_
will only be available ifrefit
is set and all of them will be determined w.r.t this specific scorer.See
scoring
parameter to know more about multiple metric evaluation.- verboseinteger, default=0
Controls the verbosity: the higher, the more messages.
- error_score‘raise’ or numeric, default=np.nan
Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Default is
np.nan
.- return_train_scoreboolean, default=False
If
False
, thecv_results_
attribute will not include training scores.Computing training scores is used to get insights on how different parameter settings impact the overfitting/underfitting trade-off. However computing the scores on the training set can be computationally expensive and is not strictly required to select the parameters that yield the best generalization performance.
- Attributes:
- cv_results_dict of numpy (masked) ndarrays
A dict with keys as column headers and values as columns, that can be imported into a pandas
DataFrame
.For instance the below given table
param_dtc_criterion
param_gamma
param_degree
split0_test_score
…
rank_t…
‘entropy’
–
2
0.80
…
2
‘entropy’
–
3
0.70
…
4
‘entropy’
0.1
–
0.80
…
3
‘entropy’
0.2
–
0.93
…
1
will be represented by a
cv_results_
dict of:{ 'param_kernel': masked_array(data = ['poly', 'poly', 'rbf', 'rbf'], mask = [False False False False]...) 'param_gamma': masked_array(data = [-- -- 0.1 0.2], mask = [ True True False False]...), 'param_degree': masked_array(data = [2.0 3.0 -- --], mask = [False False True True]...), 'split0_test_score' : [0.80, 0.70, 0.80, 0.93], 'split1_test_score' : [0.82, 0.50, 0.70, 0.78], 'mean_test_score' : [0.81, 0.60, 0.75, 0.85], 'std_test_score' : [0.01, 0.10, 0.05, 0.08], 'rank_test_score' : [2, 4, 3, 1], 'split0_train_score' : [0.80, 0.92, 0.70, 0.93], 'split1_train_score' : [0.82, 0.55, 0.70, 0.87], 'mean_train_score' : [0.81, 0.74, 0.70, 0.90], 'std_train_score' : [0.01, 0.19, 0.00, 0.03], 'mean_fit_time' : [0.73, 0.63, 0.43, 0.49], 'std_fit_time' : [0.01, 0.02, 0.01, 0.01], 'mean_score_time' : [0.01, 0.06, 0.04, 0.04], 'std_score_time' : [0.00, 0.00, 0.00, 0.01], 'params' : [{'kernel': 'poly', 'degree': 2}, ...], }
NOTE
The key
'params'
is used to store a list of parameter settings dicts for all the parameter candidates.The
mean_fit_time
,std_fit_time
,mean_score_time
andstd_score_time
are all in seconds.For multi-metric evaluation, the scores for all the scorers are available in the
cv_results_
dict at the keys ending with that scorer’s name ('_<scorer_name>'
) instead of'_score'
shown above. (‘split0_test_precision’, ‘mean_train_precision’ etc.)- best_estimator_estimator or dict
Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if
refit=False
.See
refit
parameter for more information on allowed values.- best_score_float
Mean cross-validated score of the best_estimator
For multi-metric evaluation, this is present only if
refit
is specified.- best_params_dict
Parameter setting that gave the best results on the hold out data.
For multi-metric evaluation, this is present only if
refit
is specified.- best_index_int
The index (of the
cv_results_
arrays) which corresponds to the best candidate parameter setting.The dict at
search.cv_results_['params'][search.best_index_]
gives the parameter setting for the best model, that gives the highest mean score (search.best_score_
).For multi-metric evaluation, this is present only if
refit
is specified.- scorer_function or a dict
Scorer function used on the held out data to choose the best parameters for the model.
For multi-metric evaluation, this attribute holds the validated
scoring
dict which maps the scorer key to the scorer callable.- n_splits_int
The number of cross-validation splits (folds/iterations).
- refit_time_float
Seconds used for refitting the best model on the whole dataset.
This is present only if
refit
is not False.
Notes
The parameters selected are those that maximize the score of the held out data, unless an explicit score is passed in which case it is used instead.
If n_jobs was set to a value higher than one, the data is copied for each point in the grid (and not n_jobs times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set pre_dispatch. Then, the memory is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2 * n_jobs.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.tree import DecisionTreeClassifier >>> from sklearn.neighbors import KNeighborsClassifier >>> from mlresearch.model_selection import ModelSearchCV >>> X, y, *_ = load_breast_cancer().values() >>> param_grids = [{'dt__max_depth': [3, 6]}, {'kn__n_neighbors': [3, 5]}] >>> estimators = [('dt', DecisionTreeClassifier()), ('kn', KNeighborsClassifier())] >>> model_search_cv = ModelSearchCV(estimators, param_grids) >>> model_search_cv.fit(X, y) ModelSearchCV(...) >>> sorted(model_search_cv.cv_results_.keys()) ['mean_fit_time', 'mean_score_time', 'mean_test_score',...]
- property classes_¶
Class labels.
Only available when refit=True and the estimator is a classifier.
- decision_function(X)¶
Call decision_function on the estimator with the best found parameters.
Only available if
refit=True
and the underlying estimator supportsdecision_function
.- Parameters:
- Xindexable, length n_samples
Must fulfill the input assumptions of the underlying estimator.
- Returns:
- y_scorendarray of shape (n_samples,) or (n_samples, n_classes) or (n_samples, n_classes * (n_classes-1) / 2)
Result of the decision function for X based on the estimator with the best found parameters.
- fit(X, y=None, groups=None, **fit_params)[source]¶
Run fit with all sets of parameters.
- Parameters:
- Xarray-like of shape (n_samples, n_features) or (n_samples, n_samples)
Training vectors, where n_samples is the number of samples and n_features is the number of features. For precomputed kernel or distance matrix, the expected shape of X is (n_samples, n_samples).
- yarray-like of shape (n_samples, n_output) or (n_samples,), default=None
Target relative to X for classification or regression; None for unsupervised learning.
- **paramsdict of str -> object
Parameters passed to the
fit
method of the estimator, the scorer, and the CV splitter.If a fit parameter is an array-like whose length is equal to num_samples then it will be split across CV groups along with X and y. For example, the sample_weight parameter is split because len(sample_weights) = len(X).
- Returns:
- selfobject
Instance of fitted estimator.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Added in version 1.4.
- Returns:
- routingMetadataRouter
A
MetadataRouter
encapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- inverse_transform(X=None, Xt=None)¶
Call inverse_transform on the estimator with the best found params.
Only available if the underlying estimator implements
inverse_transform
andrefit=True
.- Parameters:
- Xindexable, length n_samples
Must fulfill the input assumptions of the underlying estimator.
- Xtindexable, length n_samples
Must fulfill the input assumptions of the underlying estimator.
Deprecated since version 1.5: Xt was deprecated in 1.5 and will be removed in 1.7. Use X instead.
- Returns:
- X{ndarray, sparse matrix} of shape (n_samples, n_features)
Result of the inverse_transform function for Xt based on the estimator with the best found parameters.
- property n_features_in_¶
Number of features seen during fit.
Only available when refit=True.
- predict(X)¶
Call predict on the estimator with the best found parameters.
Only available if
refit=True
and the underlying estimator supportspredict
.- Parameters:
- Xindexable, length n_samples
Must fulfill the input assumptions of the underlying estimator.
- Returns:
- y_predndarray of shape (n_samples,)
The predicted labels or values for X based on the estimator with the best found parameters.
- predict_log_proba(X)¶
Call predict_log_proba on the estimator with the best found parameters.
Only available if
refit=True
and the underlying estimator supportspredict_log_proba
.- Parameters:
- Xindexable, length n_samples
Must fulfill the input assumptions of the underlying estimator.
- Returns:
- y_predndarray of shape (n_samples,) or (n_samples, n_classes)
Predicted class log-probabilities for X based on the estimator with the best found parameters. The order of the classes corresponds to that in the fitted attribute classes_.
- predict_proba(X)¶
Call predict_proba on the estimator with the best found parameters.
Only available if
refit=True
and the underlying estimator supportspredict_proba
.- Parameters:
- Xindexable, length n_samples
Must fulfill the input assumptions of the underlying estimator.
- Returns:
- y_predndarray of shape (n_samples,) or (n_samples, n_classes)
Predicted class probabilities for X based on the estimator with the best found parameters. The order of the classes corresponds to that in the fitted attribute classes_.
- score(X, y=None, **params)¶
Return the score on the given data, if the estimator has been refit.
This uses the score defined by
scoring
where provided, and thebest_estimator_.score
method otherwise.- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input data, where n_samples is the number of samples and n_features is the number of features.
- yarray-like of shape (n_samples, n_output) or (n_samples,), default=None
Target relative to X for classification or regression; None for unsupervised learning.
- **paramsdict
Parameters to be passed to the underlying scorer(s).
- ..versionadded:: 1.4
Only available if enable_metadata_routing=True. See Metadata Routing User Guide for more details.
- Returns:
- scorefloat
The score defined by
scoring
if provided, and thebest_estimator_.score
method otherwise.
- score_samples(X)¶
Call score_samples on the estimator with the best found parameters.
Only available if
refit=True
and the underlying estimator supportsscore_samples
.Added in version 0.24.
- Parameters:
- Xiterable
Data to predict on. Must fulfill input requirements of the underlying estimator.
- Returns:
- y_scorendarray of shape (n_samples,)
The
best_estimator_.score_samples
method.
- set_fit_request(*, groups: bool | None | str = '$UNCHANGED$') ModelSearchCV ¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- groupsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
groups
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- transform(X)¶
Call transform on the estimator with the best found parameters.
Only available if the underlying estimator supports
transform
andrefit=True
.- Parameters:
- Xindexable, length n_samples
Must fulfill the input assumptions of the underlying estimator.
- Returns:
- Xt{ndarray, sparse matrix} of shape (n_samples, n_features)
X transformed in the new space based on the estimator with the best found parameters.