mlresearch.metrics
.AlphaPrecision¶
- class mlresearch.metrics.AlphaPrecision(scorer_real, alpha=0.05)[source]¶
Measures synthetic data fidelity. It estimates the probability that a synthetic sample resides in the $alpha$-support of the real distribution.
This is an implementation of the metric proposed in [1].
Warning
This metric is not listed in the
get_scorer_names
function since it is following an unconventional structure.- Parameters:
- scorer_realfunction
Method used to map a dataset into a score, or a 1-dimensional projection of itself. The mapping should be modelled over the original (real) dataset.
- alphafloat, default=0.05
Percentile used to determine the radius of the euclidean ball.
- Attributes:
- center_float
Value of the center of the euclidean ball.
References
[1]Alaa, A., Van Breugel, B., Saveliev, E. S., & van der Schaar, M. (2022, June). How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models. In International Conference on Machine Learning (pp. 290-306). PMLR.
- fit(X_real)[source]¶
Compute statistics necessary to calculate $alpha$-precision.
- Parameters:
- X_realarray-like or pd.DataFrame, shape (n_samples, n_features)
The real (original) dataset used to fit self.scorer_real.
- Returns:
- selfobject
Returns an instance of the class.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- score(X_synth)[source]¶
Returns 1 if a sample resides in the $alpha$-support of the original distribution, 0 otherwise.
- Parameters:
- Xarray-like or pd.DataFrame, shape (n_samples, n_features)
Input data over which $alpha$-precision will be calculated.
- Returns:
- scoresnp.ndarray, shape (n_samples,)
$alpha$-precision scores.
- set_fit_request(*, X_real: bool | None | str = '$UNCHANGED$') AlphaPrecision ¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- X_realstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_real
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_score_request(*, X_synth: bool | None | str = '$UNCHANGED$') AlphaPrecision ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- X_synthstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
X_synth
parameter inscore
.
- Returns:
- selfobject
The updated object.